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Why 1s it important?

1. These maps have applications in designing secure encryption schemes
(one of the main motivations that drives me!).

2. Investigating chaos regions might let engineers design proper fail-safes
in switched systems in avionics, for example!

3. Prevention of undesirable chaotic regimes while designing DC-DC
power converters and inverters.

4. Many more ..., which this margin 1s too small to contain.”



Border-collision normal form

» Piecewise-linear maps arise when modeling systems with switches, thresholds and
other abrupt events.

» In our project, we study the two-dimensional border-collision normal form (Nusse
& Yorke, 1992), given by
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» Here (z,y) € R? and & = (11,01, 7r, 6r) € R? are the parameters.



Phase portrait of a chaotic attractor

Figure: A sketch of the phase portrait of f: with £ € Ppvyq.



Renormalisation operator

» Renormalisation involves showing that, for some members of a family of maps, a
higher iterate or induced map is conjugate to different member of this family of

maps.
» Although the second iterate fg has four pieces, relevant dynamics arise in only two
of these. We have

cr
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» Now f€2 can be transformed to f, ), where g is the renormalisation operator
(Ghosh & Simpson, 2022.) g : R* — R*, given by

(fL, o, TR, SR) = (1% — 28R, 07, TLTR — 61, — OR, 6L.0R)



Renormalisation operator

» We perform a coordinate change to put f§2 in the normal form :
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Results

» We consider the parameter region
®={¢eRr,>d6,+1,60 >0,7r < —(0p+1),6r > 0}.
> Let
¢ (§) =Co=0r — (TR + 0L +0r — (1 +TR)AL)AL.

» The stable and the unstable manifolds of the fixed point Y intersect if and only if
¢T(£) <0.

» The attractor is often destroyed at ¢ (&) = 0 which is a homoclinic bifurcation
(Banerjee, Yorke & Grebogi, 1998), and thus focused their attention on the region

Ppye = {£ € P|pT(E) > 0}.
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Figure: The sketch of two-dimensional cross-section of ®3yg when 6, = dr = 0.01.



Results

Theorem (Ghosh & Simpson, 2022)

The R,, are non-empty, mutually disjoint, and converge to the fixed point (1,0, —1,0)
as n — oo. Moreover,
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n=0

Let,
A(§) = cl(WH(X)).

Theorem (Ghosh & Simpson, 2022)

For the map f¢ with any & € Ro, A(§) is bounded, connected, and invariant. Moreover,
A(&) is chaotic (positive Lyapunov exponent).



Results

Theorem (Ghosh & Simpson, 2022)

For any £ € R, where n > 0, g"(£) € Rg and there exist mutually disjoint sets
SO, Sl, c ey SQ"Z‘_]_ - RQ SUCh that ff(Sz) - S(’I,-{—l) mod 2m and

fé n

for each i € {0,1,...,2"™ — 1}. Moreover,

s; s affinely conjugate to fgn(e)|A(gn(¢))

2" -1

U Si=d(W*(m)),

1=0

where 7y, is a saddle-type periodic solution of our map f¢ having the symbolic itinerary
F"(R) given by Table 1.



Results
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Table: The first 5 words in the sequence generated by repeatedly applying the substitution rule
(L,R)— (RR,LR) to W = R.



Results

£ =(1.15,0.01,-1.12,0.01) € R,
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Devaney Chaos
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Devaney Chaos

Theorem (Ghosh & Simpson, 2022)

Let £ € ®pya and suppose J1(§) > 1 and A} + |A%| < 1. Then W*(X) is dense in a
triangular region containing A.

Theorem (Ghosh & Simpson, 2022)

Let £ € ®pyq and suppose J1(§) > 1 and Jo(§) < 1. Then, f¢ is chaotic in the sense
of Devaney on A.



Generalised parameter region

Now we consider the more generalised parameter region considering the
orientation-reversing and non-invertible cases,

@={§€R4 | TL>|5L+1|,TR<—|5R+1|}.



Typical phase portraits

(a)(5L>O,(5R>O (b)(5L<O,(SR<O

Figure: Typical phase portraits of the chaotic attractor for the invertible case (6.6 > 0).



Typical phase portraits

(a)5L>0,5R<O (b)5L<0,5R>0

Figure: Typical phase portraits of the chaotic attractor for the non-invertible case (6.6r < 0).



Invariant expanding cones

Chaos in ®gyq can be proved by constructing an invariant expanding cone in tangent
space (Glendinning & Simpson, 2021). We have extended this to ®.

Figure: A sketch of an invariant expanding cone C' and its image AC = {Av|v € C}, given
A e R?X2,



Robust Chaos in a generalised setting
Theorem (Ghosh, McLachlan, & Simpson, 2023)

For any £ € ®trap N Peone, the normal form fe has a topological attractor with a
positive Lyapunov exponent.

Figure: A 2D slice of ®yap N Peope C R



The orientation-reversing case

> Let
R ={ee® |, <0,0r <0},

be the subset of ® for which the BCNF is orientation-reversing.

» The attractor A which is again a closure of the unstable manifold of X faces a
crisis at C(()2) = 0 where

(P = (&) = 6 — (Or + 7R — (1 + AXL)AL)AL |



The orientation-reversing case

> Now, & € ®@ implies g(¢) € @), so we again use the preimages of ¢* (&) =0
under g to define the region boundaries: Specifically we let

R = {6 € 0@ |67(6) > 0,6%(9(6)) < 0,a() <0},
R = {g c @ ( &+ (g"(€)) > 0,67 (¢"THE)) < 0,a(8) < o} . foralln>1.

where
()z(f) =TLTR + (5L — 1)((53 — 1).

» This brings us to the proposition

Proposition (Ghosh, McLachlan, & Simpson, 2024)
ife € R withn > 1, then g(¢) € R,



The orientation-reversing case

he(Te)

(@) ¢ =& e Ry (b) € = g(¢%) e RV



The non-invertible case 67, > 0,0z < 0
> Let
OB ={eec® |, >0,05 <0},

meaning the map is invertible.

» In this region an attractor can be destroyed by crossing the homoclinic bifurcation
¢t (&) = 0 or the heteroclinic bifurcation ¢~ (&) = 0.

» we define

Gmin (§) = min[67(€), 67 (£)]-

and

Rg&) = {5 € @(3) ‘ Qbmin (gn(f)) > 0, ¢Inin (gn+1(£)) < O, Of(g) < O} 3

for all n > 0.



The non-invertible case 67, > 0,0 < 0

» This brings us to a new proposition:

Proposition (Ghosh, McLachlan, & Simpson, 2024)
If¢ e R( ) with n > 1, then g(&) € R(3)

£
\ he(Te)

(a) ¢ =¢P e RY (b) € = g(¢¥) e RYY



The non-invertible case d;, < 0,9z > 0

» |t remains for us to consider
oW ={£e® |6, <0,65 >0},

where the BCNF is again non-invertible.

» In this region the attractor is usually destroyed before the boundaries ¢ (&) = 0
and ¢~ (&) = 0 in a heteroclinic bifurcation that cannot be characterised by an
explicit condition on the parameter values.

» Despite the extra complexities in @) it still appears that renormalisation is helpful
for explaining the bifurcation structure. Let

Ry = {€€ @D | 6uin(&) > 0, dmin(9(€)) <0, a() <0}
R = €€ 0| Gin(g"(€)) > 0, dmin(9™ () <0, a(€) < 0,a(g(€)) < 0}



The non-invertible case 67, < 0,0 > 0

» This brings us to the new propostion:

Proposition (Ghosh, McLachlan, & Simpson, 2024)
If¢€ € R( ) with n > 1, then g(§) € R(3)

hg(TTe)

(a) ¢ = ¢ e R\ (b) € = g(e?) e RY



Numerics

» We verify these bifurcation structures numerically by using Eckstein’s greatest
common divisor algorithm (Eckstein, 2006), described by Avrutin et al, 2007 to
estimate from sample orbits the number of connected components in the attractor.
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Numerics
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(b) 6, =0.3,65 = —0.4.



Numerics

(4)
R h=—(6r+ 1)

(a) 5[, oS —0.4, 6R =04. (b) 6L = —0.5, 6R = 0.4.



Numerics
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Higher-dimensional setting

» Let n > 2. Suppose a > 1 is an eigenvalue of Ay, and —3 < —1 of Ag with
multiplicity one, and all other eigenvalues of Ay, and Ar have modulus at most
0<r<l.

Theorem (Ghosh & Simpson, 2024)

Holding the above assumption and

7‘(n—1)<§<1—%), T'(TI,—1)<%(1_%>1

1 /1 1
n-1))< —({—+=-1
rin=1) < 10 (a+5 )’

then f has a topological attractor with a positive Lyapunov exponent.



Higher-dimensional setting

Figure: The construction of a forward invariant region € for n = 3.



Higher-dimensional setting

TR o Ppyg =0

Figure: Robust chaos parameter region for the two-dimensional map, with our
higher-dimensional construction portrayed on top of it. We chose n = 2 for simplicity.



Future Directions

» We expect our construction in the two-dimensional setting could be adapted to
verify robust chaos beyond the boundaries reported.
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» |t would be interesting to see if renormalisation schemes based on other symbolic
substitution rules can be used to explain parameter regimes where the BCNF has
attractors with other numbers of components, e.g. three components.
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possibility of so-called wild chaos, and it remains to treat these scenarios.



Future Directions

» We expect our construction in the two-dimensional setting could be adapted to
verify robust chaos beyond the boundaries reported.

» |t would be interesting to see if renormalisation schemes based on other symbolic
substitution rules can be used to explain parameter regimes where the BCNF has
attractors with other numbers of components, e.g. three components.

» Maps with multiple directions of instability should be just as relevant, giving the
possibility of so-called wild chaos, and it remains to treat these scenarios.

» As one application | want to apply n—dimensional construction as the key space for
an encryption scheme.
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The End

Thank you! Questions?



